

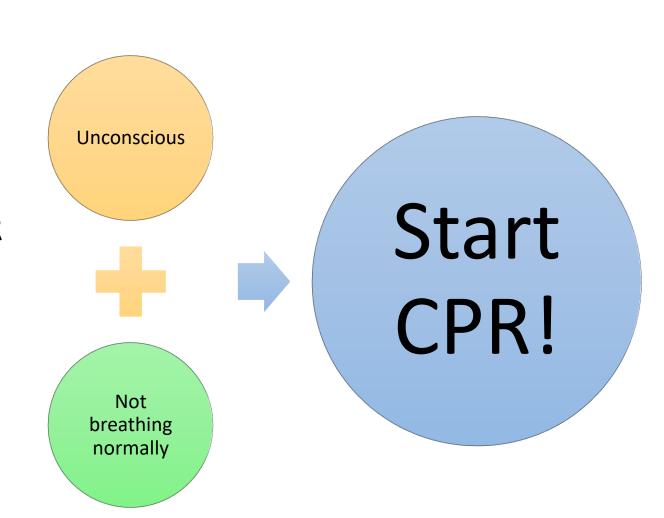
# Telephone CPR and Metrics

Dr Desmond Mao
Consultant, Khoo Teck Puat Hospital
Medical Consultant, Unit of
Prehospital Emergency Care

"Towards a World Class Pre-hospital Emergency Care System for Singapore"



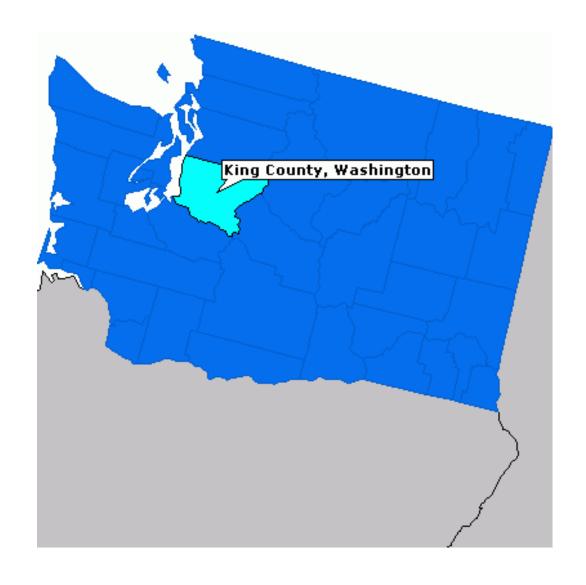
### Acknowledgements


- Dr Ng Yih Yng
- A/Prof Marcus Ong
- Dr Benjamin Leong

### What is Dispatcher Assisted CPR?

Dispatcher asks 2
 KEY questions

 Coaches caller to do hands-only CPR


 For paediatric age group – Mouth to mouth is encouraged



# Beginnings of Telephone-CPR

• Beginning in 1981

 We have come a long way since then!





Contents lists available at ScienceDirect

### Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation



### Clinical paper

A before-after interventional trial of dispatcher-assisted cardio-pulmonary resuscitation for out-of-hospital cardiac arrests in Singapore<sup>th</sup>



Sumitro Harjanto<sup>a</sup>, May Xue Bi Na<sup>b</sup>, Ying Hao<sup>c</sup>, Yih Yng Ng<sup>d</sup>, Nausheen Doctor<sup>e</sup>, E. Shaun Goh<sup>f</sup>, Benjamin Sieu-Hon Leong<sup>g</sup>, Han Nee Gan<sup>h</sup>, Michael Yih Chong Chia<sup>i</sup>, Lai Peng Tham<sup>j</sup>, Si Oon Cheah<sup>k</sup>, Nur Shahidah<sup>e</sup>, Marcus Eng Hock Ong<sup>e,l,\*</sup>, For the PAROS study group

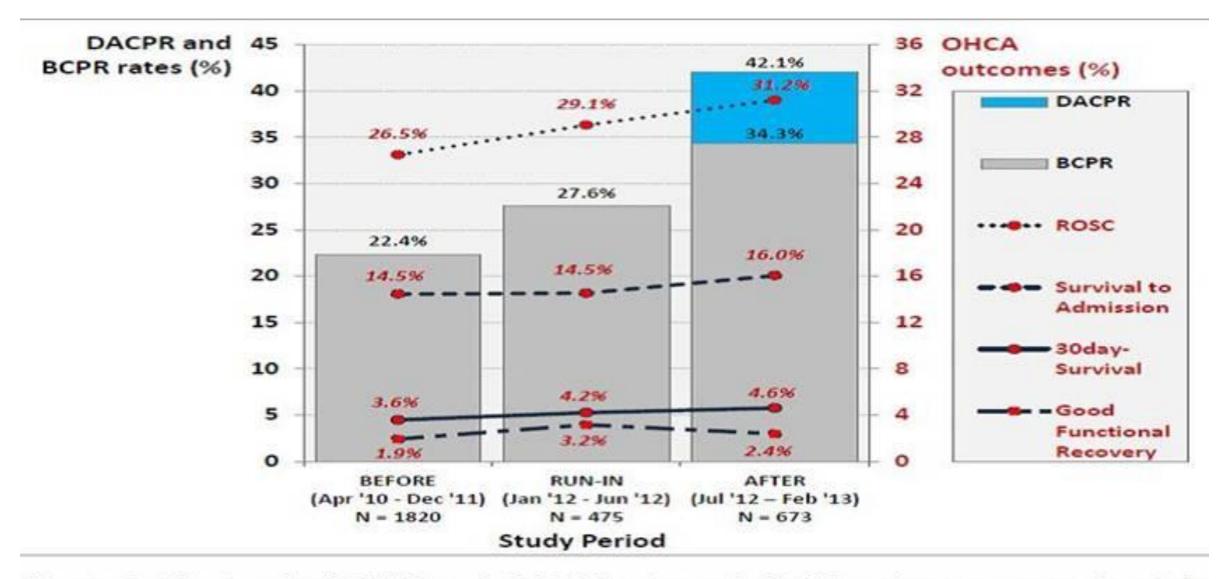
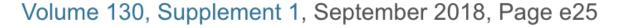




Figure 2: The trend of BCPR and DACPR rates and OHCA outcomes across the study periods.



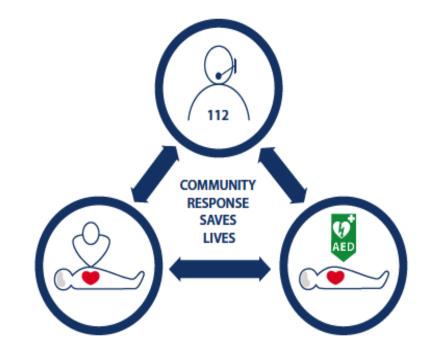
### Resuscitation



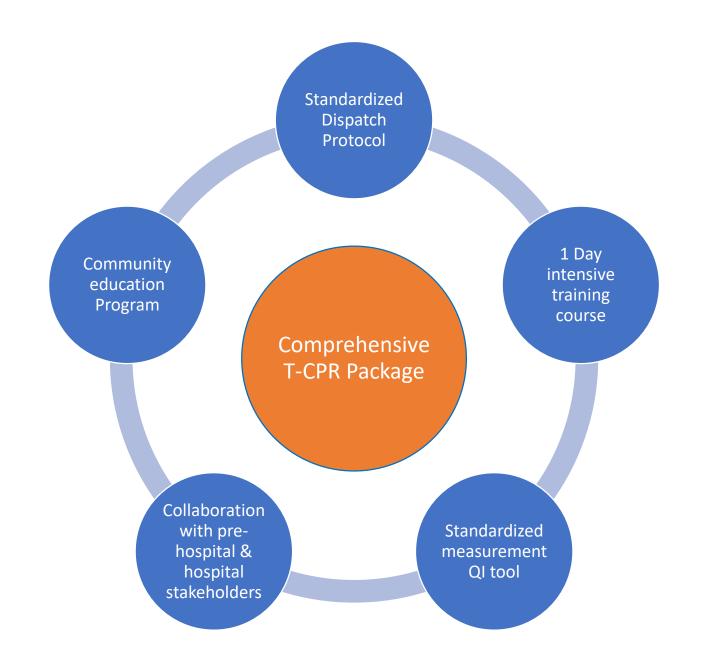


AS045

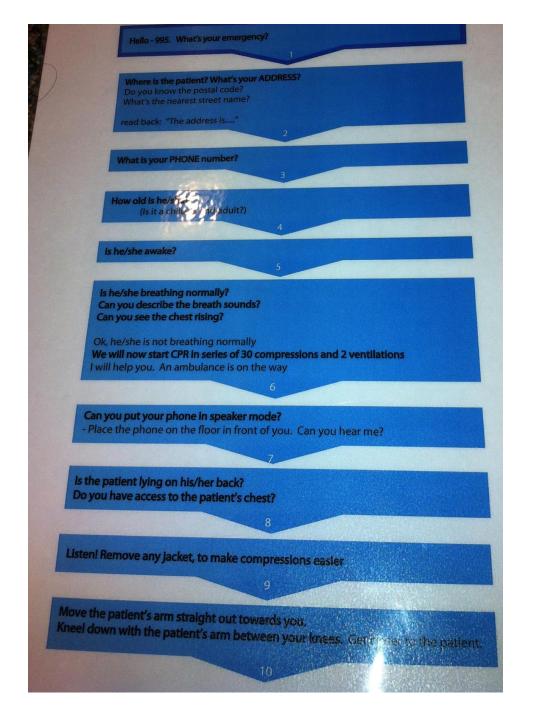
Improvements in bystander CPR rates and survival for Out-of-Hospital Cardiac Arrest with a comprehensive dispatcherassisted CPR program in Singapore


Marcus E.H. Ong <sup>1, 2</sup> ○, Jasmine Y.Y. Lim <sup>2</sup>, Win Wah <sup>1</sup>, Nur Shahidah <sup>1</sup>, Susan Yap <sup>1</sup>, Pin Pin Pek <sup>1</sup>, Yih Yng Ng <sup>3</sup>, Benjamin S.H. Leong <sup>4</sup>, Han Nee Gan <sup>5</sup>, Desmond R. Mao <sup>6</sup>, Michael Y.C. Chia <sup>7</sup>, Si Oon Cheah <sup>8</sup>, Lai Peng Tham

### What we know


T-CPR increases Bystander CPR rates

 Most data suggests that T-CPR increases survival rates and good neurological outcomes


QI/QA improves quality of T-CPR



# Ingredients for Success



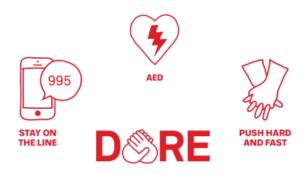
### Standardized Dispatch Protocol





1 Day Intensive
Program for both
Call-takers and
Dispatch Center
Managers

## Standardized Measurement QI Tool


Dispatch: Preliminary

| Dispatch agency                                   | SCDF                                  |                                      |                               |
|---------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|
| Date of call                                      | /                                     |                                      |                               |
| Time of call                                      | : [   hh:mm:ss)                       |                                      |                               |
| PAROS case number<br>(Official/PAROS HQ use only) | S G S I N                             |                                      |                               |
| Incident No/CAD                                   |                                       |                                      |                               |
| Was this a cardiac arrest before arrival of EMS?  | □ <sub>1</sub> Yes                    | □ <sub>2</sub> No                    | □ <sub>3</sub> Unknown        |
| CPR already in progress?                          | □ <sub>1</sub> Yes                    | □ <sub>2</sub> No                    | □ <sub>3</sub> Unknown        |
| Did Dispatch recognize need for CPR?              | □ <sub>1</sub> Yes                    | □ <sub>2</sub> No                    | □ <sub>3</sub> Unknown        |
| CPR instructions started?                         | □ <sub>1</sub> Yes                    | □ <sub>2</sub> No                    | □ <sub>3</sub> Unknown        |
| Chest Compressions performed?                     | $\square_1$ Yes                       | $\square_2$ No                       | □ <sub>3</sub> Unknown        |
| Barriers to CPR                                   | $\square_1$ Hang up phone             | $\square_2$ Caller left phone        | $\square_3$ Caller refused    |
|                                                   | $\square_4$ Caller not with patient   | $\square_5$ Language barrier         | $\square_6$ Overly distraught |
|                                                   | $\square_7$ Couldn't move patient     | $\square_8$ Patient's status changed | □9 Difficult patient access   |
|                                                   | $\square_{10}$ Other (please specify) |                                      | $\square_{11}$ Not applicable |
|                                                   |                                       |                                      |                               |

## It Takes a System to Save a Victim

### Collaboration is needed

# Community Education







## The Road to Recognition and Resuscitation

The Role of Telecommunicators and Telephone CPR Quality Improvement in Cardiac Arrest Survival

# Continuous Quality Improvement

### Current Recommendations - Diagnosis

#### 2.10: RECOGNITION PERFORMANCE STANDARDS AND BENCHMARKS

Percentage of total OHCA cases correctly identified by PSAP<sup>8</sup>

75%

Percentage of OHCA cases correctly identified by PSAP that were recognizable<sup>9</sup>

95%

Percentage of call taker recognized OHCA Receiving T-CPR<sup>10</sup>

75%

Median time between 911 call and OHCA recognition<sup>11</sup>

Less than 120 seconds (less than 60 seconds from address acquisition to telecommunicator recognition of OHCA)

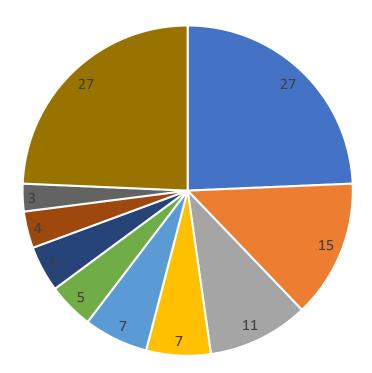
### Current Recommendations - Treatment

Time to rapid dispatch <60seconds

Median time between 911 call and first T-CPR directed compression<sup>14</sup>

<180 seconds (less than 120 seconds from address acquisition to first CPR compression directed by the Telecommunicator)

## Discussion Time!


### Discussion (1)

- 1) Tele-Diagnosis of OHCA
- What are the shortcomings with current methods/phrasing?
- What are more accurate ways to pick up OHCA?

### Discussion (2)

- 2) Treatment
- Barriers to starting DA-CPR—> What are the possible
- —> what are the possible solutions?
- CPR on the ground vs the bed? Which is better?
- Methods to measure the quality of tele-CPR. Are there any?

### Barriers



- Couldn't move patient
- Hung up phone
- Caller left phone
- Caller not with patient
- Language barrier

- Caller refused
- Patient status changed
- Overly distraught
- Difficult access to patient
- Others



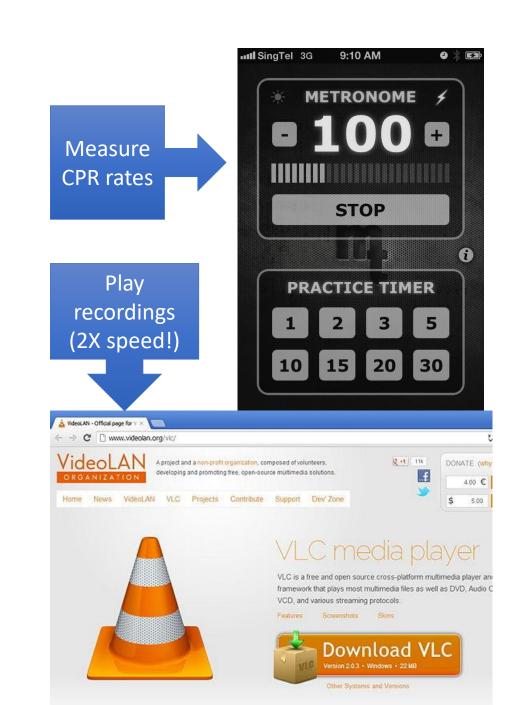
Contents lists available at ScienceDirect

### Resuscitation





Clinical paper


Barriers to dispatcher-assisted cardiopulmonary resuscitation in  $\mathsf{Singapore}^{\Leftrightarrow}$ 



 37.2% of cases had one or more barriers

### Discussion (3)

- 3) Reporting Metrics
- Areas that we need further standardisation.
- 4) Training
- Role of dispatchers. Horizontal vs Vertical component. What is the ideal workflow?
- What should training focus on?



### Discussion (4)

- 6) New Operational Roles for Dispatchers
- Handling crowd-sourced CPR
   Apps
- What are the standards & reporting metrics?

### Discussion (5)

- 7) Collaboration with other stakeholders
  - Standardization with CPR educators
  - Giving location





### Areas for Discussion

- 1. Tele-diagnosis of OHCA
- 2. Treatment Barriers
- 3. Reporting Metrics
- 4. Training of Dispatchers
- 5. New Operational Role for Dispatchers
- 6. Collaboration